How do you graph #X^2+Y^2-16X+4Y+52=0#?
1 Answer
Jan 14, 2017
This is a circle of radius
Explanation:
Complete the square for both
Given:
#x^2+y^2-16x+4y+52=0#
Reorganise as:
#color(blue)(x^2-16x+64)+color(green)(y^2+4y+4)-16=0#
That is:
#color(blue)(x^2-2(8x)+8^2)+color(green)(y^2+2(2y)+2^2)-4^2=0#
Hence:
#color(blue)((x-8)^2)+color(green)((y+2)^2) = 4^2#
which is (more or less) in the form:
#color(blue)((x-h)^2)+color(green)((y-k)^2) = r^2#
with
graph{(x^2+y^2-16x+4y+52)((x-8)^2+(y+2)^2-0.038)=0 [-4.08, 15.92, -6.84, 3.16]}