How do you graph #x^2 = y-x#?

1 Answer
Sep 8, 2017

#"see explanation"#

Explanation:

#"the parabola can be graphed by finding the zeros, vertex"#
#"and additional points"#

#"express in standard form "y=ax^2+bx+c#

#rArry=x^2+x#

#"with "a=1,b=1,c=0#

#"since "c=0" then y-intercept is 0"#

#• " if "a>0" then minimum turning point " uuu#

#• " if "a<0" then maximum turning point " nnn#

#"here "a=1>0rArr" minimum turning point"#

#"to find the zeros let y = 0 and solve for x"#

#rArrx^2+x=0#

#rArrx(x+1)=0#

#rArrx=0" or "x=-1larrcolor(red)" zeros"#

#"find the vertex by "color(blue)"completing the square"#

#rArrx^2+2(1/2)x+1/4-1/4#

#=(x+1/2)^2-1/4larrcolor(red)" in vertex form"#

#"the vertex "=(-1/2,-1/4)#

#color(blue)"Additional points"#

#x=1toy=1^2+1=2rArr(1,2)#

#x=2toy=2^2+2=6rArr(2,6)#

#x=-2toy=(-2)^2-2=2rArr(-2,2)#

#"plot these key points and draw a smooth curve through them"#
graph{x^2+x [-10, 10, -5, 5]}