How do you identify #cot^2x(sin^2x)#?
2 Answers
Mar 16, 2017
Explanation:
Mar 16, 2017
Explanation:
I am assuming you mean
#color(blue)"simplify"# Uing the
#color(blue)"trigonometric identity"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(cot^2x=(cos^2x)/(sin^2x))color(white)(2/2)|)))#
#rArrcot^2x(sin^2x)#
#=cos^2x/cancel(sin^2x)^1xxcancel(sin^2x)^1#
#=cos^2x#