How do you identify the conic section represented by each equation 4x^2+y^2-16x-6y+9=0?
1 Answer
Nov 29, 2015
Vertical ellipse
Equation:
Explanation:
We can find the equation by completing the square
4x^2 +y^2 -16x-6y+9 = 0
(4x^2 -16 x+ color(red)square) + (y^2 -6y+ color(blue)square) = -9 + color(red)(square)+color(blue)(square)
4(x^2-4x +color(red)square) + (y^2 -6y +color(blue)square) = -9 +4color(red)(*(square)) + color(blue)(square)
4(x^2-4x +color(red)4)+ (y^2 -6y color(blue)(+9) )= -9 +4color(red)(*(4) + color(blue)(9)
4(x^2-4x +color(red)4)+ (y^2 -6y color(blue)(+9)) = -9 +color(red)(*(16) + color(blue)(9)
4(x-2)^2+ (y-3)^2 = 16
(4(x-2)^2)/(16)+ (y-3)^2/(16) = 16/16
(x-2)^2/(4)+ (y-3)^2/(16) = 1
This is a vertical ellipse with center at #(2, 3)
graph{4x^2+y^2-16x-6y+9=0 [-8.59, 9.19, -1.186, 7.704]}