How do you integrate #(2x)/(x²-1) #? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer ali ergin May 28, 2016 #int (2x)/(x^2-1) d x=l n(x^2-1)+C# Explanation: #int (2x)/(x^2-1) d x=?# #x^2-1=u# #2x d x=d u# #int (2x)/(x^2-1) d x=int (d u)/u=l n u +C# #int (2x)/(x^2-1) d x=l n(x^2-1)+C# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #((4x^2-1)^2)/x^3dx #? How do you integrate #(x+3) / sqrt(x) dx#? See all questions in Integrals of Rational Functions Impact of this question 32367 views around the world You can reuse this answer Creative Commons License