How do you integrate #[((3x^2)+2x)/x^2]dx# from 4 to 2? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Alan P. May 6, 2015 Here's my version: (no guarantee that it's right) #int_4^2(3x^2+2x)/(x^2) dx# #=int_4^2 ( (3x^2)/(x^2) + (2x)/(x^2))dx# #= int_4^2 (3x^2)/(x^2)dx + int_4^2 (2x)/(x^2)dx# #= 3int_4^2(1)dx + 2int_4^2(1/x) dx# #= 3*( x|_4^2 ) + 2*(ln|x||_4^2)# #=3( 2-4) + 2 (ln(2)-ln(4))# #=-6 + 2(0.693147 - 1.386794)# #=-6 - 1.3863# #= -7.3863# Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 3058 views around the world You can reuse this answer Creative Commons License