How do you integrate #(e^x/x)dx #?
1 Answer
Apr 12, 2017
This is sometimes called the exponential integral:
#inte^x/xdx="Ei"(x)+C#
But the method I'd use (since I'm not familiar with the integral) is the Maclaurin series for
#e^x=1+x+x^2/(2!)+x^3/(3!)+...=sum_(n=0)^oox^n/(n!)#
Then:
#e^x/x=1/x+1+x/(2!)+x^2/(3!)+...=1/x+sum_(n=0)^oox^n/((n+1)!)#
So the antiderivative will be:
#inte^x/xdx=int(1/x+1+x/(2!)+x^2/(3!)+...)dx=ln(absx)+x+x^2/(2*2!)+x^3/(3*3!)+...+C#
#inte^x/xdx=ln(absx)+sum_(n=1)^oox^n/(n*n!)+C#