How do you integrate #int e^-xtan(e^-x)dx#?
1 Answer
Dec 13, 2016
Explanation:
#inte^-xtan(e^-x)dx#
First, let
#=-inttan(e^-x)(-e^-x)dx#
#=-inttan(u)du#
This is a standard integral, but we can show how to integrate it by rewriting tangent as sine divided by cosine:
#=-intsin(u)/cos(u)du#
Now, let
#=int(-sin(u))/cos(u)du#
#=int(dv)/v#
This is also a standard (and very important) integral:
#=ln(absv)+C#
#=ln(abscos(u))+C#
#=ln(abscos(e^-x))+C#