How do you integrate x(5x2)dx?

1 Answer
Nov 28, 2016

The answer is =(12)5x2ln5+C

Explanation:

We use the substitution

u=x2

du=2xdx

xdx=du2

Therefore,

x(5x2)dx=125udu

Let, y=5u

Then taking the logarithm

lny=uln5

y=euln5

5udu=euln5du=euln5ln5=yln5=5uln5

Therefore,

x(5x2)dx=(12)5x2ln5+C