How do you integrate this? 10x4(1x)41+x2dx

1 Answer
Mar 17, 2018

10x4(1x)41+x2dx=227π

Explanation:

Let

I=10x4(1x)41+x2dx

Expand the numerator:

I=10x84x7+6x64x5+x4x2+1dx

Apply long division:

I=10(x64x5+5x44x24x2+1+4)dx

Integrate directly:

I=[17x723x6+x543x34tan1x+4x]10

Hence

I=227π