How do you integrate this? ∫10x4(1−x)41+x2dx
1 Answer
Mar 17, 2018
Explanation:
Let
I=∫10x4(1−x)41+x2dx
Expand the numerator:
I=∫10x8−4x7+6x6−4x5+x4x2+1dx
Apply long division:
I=∫10(x6−4x5+5x4−4x2−4x2+1+4)dx
Integrate directly:
I=[17x7−23x6+x5−43x3−4tan−1x+4x]10
Hence
I=227−π