How do you integrate #x^(-1/2) - sqrt(x) #? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Ratnaker Mehta Feb 7, 2018 # 2/3(3-x)x^(1/2)+C.# Explanation: We have, #intt^ndt=t^(n+1)/(n+1)+c, n ne -1#. #:. int{x^(-1/2)-sqrtx}dx#, #=int{x^(-1/2)-x^(1/2)}dx#, #=intx^(-1/2)dx-intx^(1/2)dx#, #=x^(-1/2+1)/(-1/2+1)-x^(1/2+1)/(1/2+1)#, #=2x^(1/2)-2/3x^(3/2)#, #=2/3(3-x)x^(1/2)+C.# Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 1713 views around the world You can reuse this answer Creative Commons License