How do you know if the conic section x^2 +4y^2-8x -48= 0 is a parabola, an ellipse, a hyperbola, or a circle?

1 Answer
Sep 13, 2016

x^2+4y^2-8x-48=0 is an ellipse.

Explanation:

Let the equation be of the type Ax^2+Bxy+Cy^2+Dx+Ey+F=0

then if

B^2-4AC=0 and A=0 or C=0, it is a parabola

B^2-4AC<0 and A=C, it is a circle

B^2-4AC<0 and A!=C, it is an ellipse

B^2-4AC>0, it is a hyperbola

In the given equation x^2+4y^2-8x-48=0

A=1, B=0 and C=4

Therefore, B^2-4AC=0^2-4xx1xx4=-16<0 and A!=C

Hence, x^2+4y^2-8x-48=0 is an ellipse.

graph{x^2+4y^2-8x-48=0 [-6.71, 13.29, -4.52, 5.48]}