How do you multiply #-3n^2(-2n^2+3n+4)#?

1 Answer
Jun 13, 2017

Use the distributive property.

The multiplied form is #6n^4 - 9n^3 - 12n^2#

Explanation:

The distributive property tells us that:

#color(red)a*(b+c)#

#color(red)a*b+color(red)a*c#

So we can use this property to distribute the #-3n^2# term:

#color(red)(-3n^2)(-2n^2+3n+4)#

#=color(red)(-3n^2) * (-2n^2) + color(red)(-3n^2) * (3n) + color(red)(-3n^2) * 4#

Now just multiply each group of terms together. Remember that two negatives make a positive.

#= 6n^4 - 9n^3 - 12n^2#

Final Answer