How do you prove #(sectheta - tantheta) (csctheta +1)=cottheta#?

1 Answer
Jul 5, 2016

The following identities will be necessary for this problem:

#sectheta = 1/costheta#

#csctheta = 1/sintheta#

#tantheta = sin theta/costheta#

#cottheta = costheta/sintheta#

#1 -sin^2theta = cos^2theta#

Now, we have what we need to prove:

#(1/costheta - sintheta/costheta)(1/sintheta + 1) = costheta/sintheta#

#((1 - sin theta)/costheta)((1 + sin theta)/sintheta) = costheta/sintheta#

#(1 - sin^2theta)/(costhetasintheta) = costheta/sintheta#

#cos^2theta/(costhetasintheta) = costheta/sintheta#

#costheta/sintheta = costheta/sintheta#

Identity proved!!

Practice exercises:

Prove the following identities:

a) #sintheta + cos^2theta/(1 + sin theta) = 1#

b) #sintheta(csctheta - sin theta) = cos^2theta#

exercises taken from http://www.swrschools.org/assets/algebra_2_and_trig/chapter12.pdf

Hopefully this helps and good luck!