How do you prove that -cot2x = (tan^2x-1)/(2tanx ?

2 Answers
May 4, 2018

LHS=-cot2x

=(-cos2x)/(sin2x)

=(-(cos^2x-sin^2x))/(2sinxcosx)

=(sin^2x-cos^2x)/(2sinxcosx)

=((sin^2x-cos^2x)/cos^2x)/((2sinxcosx)/cos^2x)

=(tan^2x-1)/(2tanx)=RHS

May 4, 2018

As proved below.

Explanation:

![http://www.dummies.com/education/math/trigonometry/using-the-double-angle-identity-for-cosine/](useruploads.socratic.org)

:. tan 2x = (2 tan x ) / (1 - tan^2 x)

R H S = (tan^2x - 1) / (2 tan x)

=> 1 / ((2tanx) / (tan^2x - 1))

=> 1 / -((2 tan x) / (1 - tan^2x))

=> 1 / - (tan 2x)

=> - cot 2x = L H S