How do you show that sum(n-1)/(n*4^n)n1n4n is convergent using the Comparison Test or Integral Test?

1 Answer
May 29, 2015

It's simplest to use the comparison test. Let a_{n}=\frac{n-1}{n\cdot 4^{n}}an=n1n4n and let b_{n}=\frac{1}{4^{n}}bn=14n. Note that 0\leq a_{n}\leq b_{n}0anbn for all integers n\geq 1n1 since \frac{n-1}{n}\leq 1n1n1 for all integers n\geq 1n1.

Also note that \sum_{n=1}^{\infty}b_{n}=\sum_{n=1}^{\infty}(\frac{1}{4})^{n}n=1bn=n=1(14)n converges since it is geometric with common ratio r=1/4r=14, which satisfies |r|<1|r|<1 (in fact, it converges to \frac{1/4}{1-1/4}=\frac{1}{3}14114=13).

The Comparison Test can now be used to say that \sum_{n=1}^{\infty}a_{n}=\sum_{n=1}^{\infty}\frac{n-1}{n\cdot 4^{n}}n=1an=n=1n1n4n converges.