How do you show whether the improper integral int lim (lnx) / x dx converges or diverges from 1 to infinity?

1 Answer
Jun 6, 2016

int_1^ooln(x)/xdx diverges to oo.

Explanation:

int_1^ooln(x)/xdx = lim_(N->oo)int_1^Nln(x)/xdx

Let u = ln(x) => du = 1/xdx.
Also, x = 1 => u = 0 and x = N => u = ln(N).

Making the substitution, we have

lim_(N->oo)int_1^Nln(x)/xdx = lim_(N->oo)int_0^ln(N)udu

=lim_(N->oo)(u^2/2)_0^ln(N)

=lim_(N->oo)(ln^2(N)/2-0^2/2)

=lim_(N->oo)ln^2(N)/2

=oo

Thus the integral int_1^ooln(x)/xdx diverges to oo.