How do you simplify (1+i)^2/(-3+2i)^2?

3 Answers
Mar 31, 2017

(2i)/(5 -12i)

Explanation:

(1 + i)^2/(-3 + 2i)^2 = (1 + 2i + i^2)/(9 - 12i +4i^2)

i^2 = -1, therefore

(1 + 2i + i^2)/(9 - 12i +4i^2) = (1 + 2i +(-1))/(9 - 12i +4(-1))

= (1 + 2i -1)/(9 - 12i - 4) = (2i)/(5 -12i)

Mar 31, 2017

The answer is color(red)((2i)/(5-12i)).

Explanation:

According to problem(ATP),
((1+i)^2)/((-3+2i)^2)
=(1-1+2i)/(4(i)^2-12i+9)[as i^2=-1]
=(2i)/(5-12i)

Mar 31, 2017

(1+i)^2/(-3+2i)^2 = -24/169+10/169i

Explanation:

Given:

(1+i)^2/(-3+2i)^2

Let us first simplify:

(1+i)/(-3+2i)

and then square it...

(1+i)/(-3+2i) = ((1+i)(-3-2i))/((-3+2i)(-3-2i))

color(white)((1+i)/(-3+2i)) = (-3-2i-3i-2i^2)/(9-4i^2)

color(white)((1+i)/(-3+2i)) = (-3-2i-3i+2)/(9+4)

color(white)((1+i)/(-3+2i)) = (-1-5i)/13

So:

(1+i)^2/(-3+2i)^2 = ((1+i)/(-3+2i))^2

color(white)((1+i)^2/(-3+2i)^2) = ((-1-5i)/13)^2

color(white)((1+i)^2/(-3+2i)^2) = (-24+10i)/169

color(white)((1+i)^2/(-3+2i)^2) = -24/169+10/169i