How do you simplify #(1+i)^2/(-3+2i)^2#?
3 Answers
Explanation:
The answer is
Explanation:
According to problem(ATP),
=
=
Explanation:
Given:
#(1+i)^2/(-3+2i)^2#
Let us first simplify:
#(1+i)/(-3+2i)#
and then square it...
#(1+i)/(-3+2i) = ((1+i)(-3-2i))/((-3+2i)(-3-2i))#
#color(white)((1+i)/(-3+2i)) = (-3-2i-3i-2i^2)/(9-4i^2)#
#color(white)((1+i)/(-3+2i)) = (-3-2i-3i+2)/(9+4)#
#color(white)((1+i)/(-3+2i)) = (-1-5i)/13#
So:
#(1+i)^2/(-3+2i)^2 = ((1+i)/(-3+2i))^2#
#color(white)((1+i)^2/(-3+2i)^2) = ((-1-5i)/13)^2#
#color(white)((1+i)^2/(-3+2i)^2) = (-24+10i)/169#
#color(white)((1+i)^2/(-3+2i)^2) = -24/169+10/169i#