How do you simplify #(1 - (sinx)^2) / (sinx - cscx)#?

1 Answer
Jun 15, 2016

-sinx

Explanation:

Let's begin by simplifying the denominator of the fraction.

using #cscx=1/(sinx)" we obtain"#

#sinx-1/sinx#

which we require to express as a single fraction.

#sinx xx(sinx/sinx)-1/sinx=sin^2x/sinx-1/sinx#

We now have a common denominator of sinx

#rArrsin^2x/sinx-1/sinx=(sin^2x-1)/sinx=(-(1-sin^2x))/sinx#

The overall fraction is now

#(1-sin^2x)/((-(1-sin^2x))/(sinx))#

We can now invert the denominator and multiply

#cancel(1-sin^2x)^1 xx(sinx)/-cancel((1-sin^2x)^1)#

#=sinx/(-1)=-sinx#