How do you simplify #(1+tantheta)/(1+cottheta)#?

2 Answers
Aug 1, 2018

#(1+tantheta)/(1+cottheta)=tantheta#

Explanation:

Here,

#(1+tantheta)/(1+cottheta)=(1+tantheta)/(1+1/tantheta)to[becausecottheta=1/tantheta]#

#=>(1+tantheta)/(1+cottheta)= (1+tantheta)/((tantheta+1)/tantheta)#

#=>(1+tantheta)/(1+cottheta)=tantheta((1+tantheta)/(tantheta+1))#

#:.(1+tantheta)/(1+cottheta)=tantheta#

Aug 1, 2018

#color(purple)(=> sin theta / cos theta = tan theta#

Explanation:

#(1 + tan theta) / (1 + cot theta)#

#=> (1 + sin theta/cos theta) / (1 + cos theta / sin theta)#

#=> (cancel(cos theta + sin theta)/cos theta) / (cancel(sin theta + cos theta)/sin theta)#

#color(purple)(=> sin theta / cos theta = tan theta#