First, split the fraction.
(2 - sec^2(x))/sec^2(x)2−sec2(x)sec2(x)
= 2/sec^2(x) - sec^2x/sec^2(x)=2sec2(x)−sec2xsec2(x)
Because cos(x) = 1/sec(x)cos(x)=1sec(x), color(red)(cos^2(x) = 1/sec^2(x))cos2(x)=1sec2(x)
= 2/color(red)(sec^2(x)) - sec^2(x)/sec^2(x)=2sec2(x)−sec2(x)sec2(x)
= color(blue)(2cos^2(x) - 1)=2cos2(x)−1
Observe the following:
color(blue)cos(2x)cos(2x)
= cos^2(x) - sin^2(x)=cos2(x)−sin2(x)
= cos^2(x) - (1 - cos^2x)=cos2(x)−(1−cos2x)
= color(blue)(2cos^2(x) - 1)=2cos2(x)−1
Therefore,
(2-sec^2(x))/sec^2(x) = cos(2x)2−sec2(x)sec2(x)=cos(2x)