Consider #+(-n/6)#
This is like #(+1)xx(-1)xxn/6#
Multiply plus and minus and the answer is minus
So #(+1)xx(-1)xxn/6 = -n/6#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Giving:#" "(2n)/5-n/6#
To be able to directly add or subtract the top numbers of fraction (count) the bottom numbers (size indicators) must be the same.
#("top number")/("bottom number")->("count")/("size indicator")->("numerator")/("denominator")#
So we need to make the bottom numbers the same. I chose 30
#color(brown)("Write as: ")((2n)/5xx1)-(n/6xx1)#
#color(brown)("But 1 comes in many forms")#
#((2n)/5xx6/6)-(n/6xx5/5)#
#(2nxx6)/(5xx6) -(nxx5)/(6xx5)#
#(12n)/30-(5n)/30 color(brown)(larr" Now we can directly subtract the counts")#
#color(brown)("but ")12n-5n= 7n#
#=>(12n)/30-(5n)/30 = (7n)/30#