How do you simplify #(2x-1)/((x-3)(x+2)) + (x-4)/(x-3)#?

2 Answers
Aug 2, 2018

#(x+3)/(x+2)#

Explanation:

#"We require the fractions to have common denominators"#

#"multiply the numerator/denominator of"#

#(x-4)/(x-3)" by "(x+2)#

#=(2x-1)/((x-3)(x+2))+((x-4)(x+2))/((x-3)(x+2))#

#=(2x-1)/((x-3)(x+2))+(x^2-2x-8)/((x-3)(x+2))#

#"add terms on numerators leaving the denominator"#

#=(x^2-9)/((x-3)(x+2))larrcolor(blue)"difference of squares"#

#=(cancel((x-3))(x+3))/(cancel((x-3))(x+2))larrcolor(blue)"cancel common factor"#

#=(x+3)/(x+2)#

#"with restriction "x!=3#

Aug 2, 2018

#color(brown)(=> (x+ 3) / (x+2)#

Explanation:

#(2x-1)/((x-3)(x+2)) + (x-4)/(x-3)#

#=>( (2x-1) + ((x-4)(x+2))) / ((x-3)(x+2))#, taking L C M.

#=> (cancel(2x) - 1 + x^2 - cancel(2x) - 8) / ((x-3)(x+2))#

#=> (x^2 - 9) / ((x-3)(x+2))#

#=> ((x+3)cancel(x-3)) / (cancel(x-3)(x+2))#

#color(brown)(=> (x+ 3) / (x+2)#