How do you simplify #(2x)/(x^2+8x+15)-(x+3)/(x+5)#?

1 Answer
Jul 6, 2017

#frac(x^2+8x+9)(x^2+8x+15)#

Explanation:

To simplify this one must first find the common denominator. This is found by first factoring #x^2+8x+15#.
This factors into #(x+5)(x+3)#

Next multiply the 2nd fraction by #(x+3)/(x+3)# to make the denominators equal.

#frac(2x)(x^2+8x+15)-frac(x+3)(x+5)*frac(x+3)(x+3)#

#frac(2x)(x^2+8x+15)-[(x+3)(x+3)]/[(x+3)(x+5)]#

#(x+3)(x+3)=x^2+6x+9#, so combining these,

#frac(2x)(x^2+8x+15)-frac(x^2+6x+9)(x^2+8x+15)=frac(x^2+8x+9)(x^2+8x+15)#