How do you simplify 3/(w + 4) + 8/(3w) + 12/(w(w +4))3w+4+83w+12w(w+4)?

1 Answer
May 23, 2017

3/(w+4)+8/(3w)+12/(w(w+4))=17/(3w)3w+4+83w+12w(w+4)=173w

Explanation:

In 3/(w+4)+8/(3w)+12/(w(w+4))3w+4+83w+12w(w+4), we have denominators as

w+4w+4, 3w3w and w(w+4)w(w+4), whose LCD is 3w(w+4)3w(w+4)

so convertig all to common denomiator, we get

3/(w+4)=3/(w+4)xx(3w)/(3w)=(9w)/(3w(w+4)3w+4=3w+4×3w3w=9w3w(w+4)

8/(3w)=8/(3w)xx(w+4)/(w+4)=(8w+32)/(3w(w+4)83w=83w×w+4w+4=8w+323w(w+4) and

12/(w(w+4))=12/(w(w+4))xx3/3=36/(3w(w+4)12w(w+4)=12w(w+4)×33=363w(w+4)

Hence, 3/(w+4)+8/(3w)+12/(w(w+4))3w+4+83w+12w(w+4)

= (9w+8w+32+36)/(3w(w+4)9w+8w+32+363w(w+4)

= (17w+68)/(3w(w+4)17w+683w(w+4)

= (17(w+4))/(3w(w+4))17(w+4)3w(w+4)

= (17cancel((w+4)))/(3wcancel((w+4)))

= 17/(3w)