How do you simplify #((3x-1) / (x^2+5x)) - ((2x-1) / (x^2-25))#?

2 Answers
Jun 9, 2018

#(x^2-15x+5)/(x(x+5)(x-5))#

Explanation:

#(3x-1)/(x^2+5x)-(2x-1)/(x^2-25)#

Factorise your denominator
=#(3x-1)/(x(x+5))-(2x-1)/((x-5)(x+5))#

Now you want to make your denominator the same
=#((3x-1)(x-5)-(2x-1)(x))/(x(x+5)(x-5))#

Expand your brackets
=#(3x^2-16x+5-2x^2+x)/(x(x+5)(x-5))#

Simplify
=#(x^2-15x+5)/(x(x+5)(x-5))#

Jun 9, 2018

#(x^2-15x+5)/((x(x+5)(x-5))#

Explanation:

Writing
#(3x-1)/(x(x+5))-(2x-1)/((x-5)(x+5))#
as

#((3x-1)(x-5))/(x(x+5)(x-5))-(x(2x-1))/((x(x-5)(x+5))#
this is equal to

#(3x^2-x-15x+5-(2x^2-x))/(x(x-5)(x+5))#
collecting likewise terms

#(x^2-15x+5)/(x(x+5)(x-5))#