How do you simplify #(3x^2-3x-6)/(x^2-4)#?

1 Answer
May 12, 2018

#(3(x+1))/(x+2)#

Explanation:

#"factorise the numerator/denominator and "#
#"cancel any common factors"#

#color(magenta)"factor numerator"#

#"take out a "color(blue)"common factor "3#

#rArr3(x^2-x-2)#

#"the factors of - 2 which sum to - 1 are - 2 and + 1"#

#=3(x-2)(x+1)#

#color(magenta)"factor denominator"#

#x^2-4" is a "color(blue)"difference of squares"#

#•color(white)(x)a^2-b^2=(a-b)(a+b)#

#rArrx^2-4=x^2-2^2=(x-2)(x+2)#

#rArr(3x^2-3x-6)/(x^2-4)#

#=(3cancel((x-2))(x+1))/(cancel((x-2))(x+2))#

#=(3(x+1))/(x+2)#

#"with restriction "x!=-2#