How do you simplify 4(cos((9pi)/4)+ising((9pi)/4))div2[cos(-pi/2)+isin(-pi/2)]4(cos(9π4)+ising(9π4))÷2[cos(π2)+isin(π2)] and express the result in rectangular form?

How do you simplify 4(cos((9pi)/4)+isin((9pi)/4))div2[cos(-pi/2)+isin(-pi/2)]4(cos(9π4)+isin(9π4))÷2[cos(π2)+isin(π2)] and express the result in rectangular form?

1 Answer
Mar 24, 2017

-sqrt2(1-i).2(1i).

Explanation:

Recall that, r(costheta+isintheta)r(cosθ+isinθ) is also denoted, as rcistheta,rcisθ, &,

r_1cisalpha-:r_2cisbeta=(r_1/r_2)cis(alpha-beta)r1cisα÷r2cisβ=(r1r2)cis(αβ).

Using these, we find, that,

"The given Exp.="4cis(9pi/4)div2cis(-pi/2)The given Exp.=4cis(9π4)÷2cis(π2)

=(4/2)[cis{(9pi/4)-(-pi/2)}].=(42)[cis{(9π4)(π2)}].

=2{cis(9pi/4+pi/2)}.=2{cis(9π4+π2)}.

=2cis(11pi/4).=2cis(11π4).

=2{cos(11pi/4)+isin(11pi/4)}.=2{cos(11π4)+isin(11π4)}.

=2{cos(3pi-pi/4)+isin(3pi-pi/4)}.=2{cos(3ππ4)+isin(3ππ4)}.

=2{-cos(pi/4)+isin(pi/4)}.=2{cos(π4)+isin(π4)}.

=2(-1/sqrt2+i1/sqrt2).=2(12+i12).

:." The Exp.="-sqrt2(1-i).

Enjoy Maths.!