4/(x-2)-3/(x+1)+2/(x^2-x-2)4x−2−3x+1+2x2−x−2
We need the denominators to be the same. We can do that by multiplying through with various forms of the number 1:
4/(x-2)(1)-3/(x+1)(1)+2/((x-2)(x+1))4x−2(1)−3x+1(1)+2(x−2)(x+1)
4/(x-2)((x+1)/(x+1))-3/(x+1)((x-2)/(x-2))+2/((x-2)(x+1))4x−2(x+1x+1)−3x+1(x−2x−2)+2(x−2)(x+1)
(4(x+1))/((x-2)(x+1))-(3(x-2))/((x+1)(x-2))+2/((x-2)(x+1))4(x+1)(x−2)(x+1)−3(x−2)(x+1)(x−2)+2(x−2)(x+1)
(4x+4)/((x-2)(x+1))-(3x-6)/((x+1)(x-2))+2/((x-2)(x+1))4x+4(x−2)(x+1)−3x−6(x+1)(x−2)+2(x−2)(x+1)
((4x+4)-(3x-6)+2)/((x-2)(x+1))(4x+4)−(3x−6)+2(x−2)(x+1)
(4x+4-3x+6+2)/((x-2)(x+1))4x+4−3x+6+2(x−2)(x+1)
(x+12)/((x-2)(x+1))=(x+12)/(x^2-x-2)x+12(x−2)(x+1)=x+12x2−x−2