How do you simplify #- 4/ (x - 5) + 7/ (2x + 3)#?

1 Answer
May 16, 2018

#(-x-47)/((2x+3)(x-5))# OR #(-x-47)/(2x^2-7x-15)#

Explanation:

Rearrange and write as:

#(7/(2x+3))-(4/(x-5))#

To simplify this, you need to make the denominators equal by finding their lowest common denominator (multiple). Whatever happens to the denominator, must happen to the numerator:

#7/((2x+3)(x-5))-4/((2x+3)(x-5))#

#(7(x-5))/((2x+3)(x-5))-(4(2x+3))/((2x+3)(x-5))#

Because the denominators now share the same LCM, you can merge them:

#(7(x-5)-4(2x+3))/((2x+3)(x-5))#

Multiply out all the brackets:

#(7x-35-8x-12)/(2x^2-10x+3x-15)#

Proceed to simplify terms:

#(-x-47)/(2x^2-7x-15)#

OR

Keep the denominator in the brackets:

#(-x-47)/((2x+3)(x-5))#