How do you simplify #(4x-1)/(x^2-4) - (3(x-1))/(x-2)#?

1 Answer
Jul 29, 2017

#=(-3x^2+x+5)/((x+2)(x-2))#

Explanation:

Before you can subtract fractions you must have a common denominator. In algebraic fractions you will often have to factorise first.

#(4x-1)/(x^2-4) -(3(x-1))/(x-2)#

#=color(blue)((4x-1)/((x+2)(x-2))) -(3(x-1))/(x-2)" "larr#LCD = #(x+2)(x-2)#
#color(white)(xxxxxx)darrcolor(white)(xxxxxxxxxx)darr#
#color(blue)("stays the same") color(white)(xxxx\x) xx color(red)((x+2)/(x+2))#

#=(color(blue)(4x-1) color(red)(-3(x-1)(x+2)))/((x+2)(x-2))#

#=(4x-1-color(red)(3(x^2+x-2)))/((x+2)(x-2))#

#=(4x-1-color(red)(3x^2-3x+6))/((x+2)(x-2))#

#=(-3x^2+x+5)/((x+2)(x-2))#