Let ,
#P=(8n-3)/(n^2+8n+12)-(5n-9)/(n^2+8n+12)#
#P=((8n-3)-(5n-9))/(n^2+8n+12)larr......... "Combine fractions"#
#P=(8n-3-5n+9)/(n^2+8n+12)#
#P=(3n+6)/(n^2+8n+12).......................................to(1)#
Now , we obtain factors:
#3n+6=3(n+2)........................................to(2)#
Here, #(6)+(2)=8 and (6)xx(2)=12#
So ,
#n^2+color(red)(8n)+12=n^2color(red)(+6n+2n)+12#
#n^2+8n+12=n(n+6)+2(n+6)#
#n^2+8n+12=(n+6)(n+2).....................to(3)#
From #(1),(2) and (3)#
#P=(3cancel((n+2)))/((n+6)cancel((n+2)))#
#:.P=3/(n+6)#