How do you simplify #(a^2-5a)/(3a-18)-(7a-36)/(3a-18)#?
1 Answer
Mar 15, 2017
with exclusion
Explanation:
Since the denominators are identical, we can start by simply subtracting the numerators:
#(a^2-5a)/(3a-18)-(7a-36)/(3a-18) = (a^2-5a-7a+36)/(3a-18)#
#color(white)((a^2-5a)/(3a-18)-(7a-36)/(3a-18)) = (a^2-12a+36)/(3a-18)#
#color(white)((a^2-5a)/(3a-18)-(7a-36)/(3a-18)) = ((a-6)(color(red)(cancel(color(black)(a-6)))))/(3(color(red)(cancel(color(black)(a-6)))))#
#color(white)((a^2-5a)/(3a-18)-(7a-36)/(3a-18)) = (a-6)/3#
#color(white)((a^2-5a)/(3a-18)-(7a-36)/(3a-18)) = a/3-2#
with exclusion
Note that if