How do you simplify #Cos[(pi/2)-x]/sin[(pi/2)-x] #?
1 Answer
Feb 27, 2016
tanx
Explanation:
Expand numerator and denominator using appropriate
#color(blue) " Addition formulae "#
#• cos(A ± B ) = cosAcosB ∓ sinAsinB #
#• sin(A ± B ) = sinAcosB ± cosAsinB #
#color(red) " Numerator "#
# cos( pi/2 - x ) = cos(pi/2)cosx + sin(pi/2)sinx # now
#cos(pi/2) = 0 " and " sin(pi/2) = 1 # simplifies to : 0 + sinx = sinx
#color(orange) " Denominator " #
#sin(pi/2 - x ) = sin(pi/2)cosx + cos(pi/2)sinx # simplifies to : cosx + 0 = cosx
#rArr cos(pi/2 -x )/sin(pi/2 -x) = sinx/cosx = tanx#