How do you simplify Cos[(pi/2)-x]/sin[(pi/2)-x] ?

1 Answer
Feb 27, 2016

tanx

Explanation:

Expand numerator and denominator using appropriate color(blue) " Addition formulae "

• cos(A ± B ) = cosAcosB ∓ sinAsinB

• sin(A ± B ) = sinAcosB ± cosAsinB

color(red) " Numerator "
cos( pi/2 - x ) = cos(pi/2)cosx + sin(pi/2)sinx

now cos(pi/2) = 0 " and " sin(pi/2) = 1

simplifies to : 0 + sinx = sinx

color(orange) " Denominator "

sin(pi/2 - x ) = sin(pi/2)cosx + cos(pi/2)sinx

simplifies to : cosx + 0 = cosx

rArr cos(pi/2 -x )/sin(pi/2 -x) = sinx/cosx = tanx