How do you simplify #cos(theta/2)-2tan(theta/2)# using the double angle identities?

1 Answer
Jul 28, 2017

#cos(theta/2)-2tan(theta/2)=sqrt((1+costheta)/2)-2sqrt((1-costheta)/(1+costheta))#

Explanation:

As #cos2A=2cos^2A-1#, #cos(theta/2)=sqrt((1+costheta)/2)# - here consider #A=theta/2#

also #cos2A=1-2sin^2A#, hence similarly we have

#sin(theta/2)=sqrt((1-costheta)/2)#

Hence #cos(theta/2)-2tan(theta/2)##cos(theta/2)-2tan(theta/2)#

= #sqrt((1+costheta)/2)-2(sqrt((1-costheta)/2))/(sqrt((1+costheta)/2))#

= #sqrt((1+costheta)/2)-2sqrt((1-costheta)/(1+costheta))#