How do you simplify #csc theta [sin theta + (1/sec theta)]#?

1 Answer
Nov 14, 2015

Rewrite everything in terms of #sintheta# and #costheta#.

Explanation:

Know the following trigonometric identities:
#sintheta=1/csctheta,color(red)(csctheta=1/sintheta)#

#color(blue)(costheta=1/sectheta),sectheta=1/costheta#

#tantheta=sintheta/costheta,color(green)(cottheta=costheta/sintheta)#

Original:
#color(red)(csctheta)[sintheta+(color(blue)(1/sectheta))]#

Rewrite everything as #sintheta# and #costheta#.
Our new statement is:
#color(red)(1/sintheta)[sintheta+color(blue)(costheta)]#

Now, distribute.
#sintheta/sintheta+color(green)(costheta/sintheta)#

Simplify using identities.
#1+color(green)(cottheta)#