f(theta)=-2csc(theta/4)-cot(theta/2)+2sin(theta/4)f(θ)=−2csc(θ4)−cot(θ2)+2sin(θ4)
=2sin(theta/4)-2/sin(theta/4)-cot(theta/2)=2sin(θ4)−2sin(θ4)−cot(θ2)
=(2sin^2(theta/4)-2)/sin(theta/4)-(2cos^2(theta/2))/(2sin(theta/2)cos(theta/2))=2sin2(θ4)−2sin(θ4)−2cos2(θ2)2sin(θ2)cos(θ2)
=(-2(1-sin^2(theta/4)))/sin(theta/4)-(1+costheta)/sintheta=−2(1−sin2(θ4))sin(θ4)−1+cosθsinθ
=(-2cos^2(theta/4))/sin(theta/4)-(1+costheta)/sintheta=−2cos2(θ4)sin(θ4)−1+cosθsinθ
=(-2(1+cos(theta/2)))/sqrt(1/2(1-cos(theta/2)))-(1+costheta)/sintheta=−2(1+cos(θ2))√12(1−cos(θ2))−1+cosθsinθ
=(-2(1+sqrt(1/2(1+costheta))))/sqrt(1/2(1-cos(theta/2)))-(1+costheta)/sintheta=−2(1+√12(1+cosθ))√12(1−cos(θ2))−1+cosθsinθ
=(-2(1+sqrt(1/2(1+costheta))))/sqrt(1/2(1-sqrt(1/2(1+costheta))))-(1+costheta)/sintheta=−2(1+√12(1+cosθ))√12(1−√12(1+cosθ))−1+cosθsinθ