How do you simplify #f(theta)=-cot(theta/2)+2sec(theta/4+pi/2)# to trigonometric functions of a unit #theta#?

1 Answer
Mar 18, 2017

#f(theta)=(1+costheta+2sqrt(2(1+costheta)))/sintheta#

Explanation:

#f(theta)=-cot(theta/2)+2sec(theta/4+pi/2)#

and as #sec(pi/2+A)=-cscA#

#f(theta)=-cot(theta/2)-2csc(theta/4)#

= #-(cos(theta/2)+2)/sin(theta/2)#

As #costheta=2cos^2(theta/2)-1=1-2sin^2(theta/2)#

#cos(theta/2)=sqrt((1+costheta)/2)# and

#sin(theta/2)=sqrt((1-costheta)/2)#

and #f(theta)=-(sqrt((1+costheta)/2)+2)/sqrt((1-costheta)/2)#

= #-(sqrt(1+costheta)+2sqrt2)/sqrt(1-costheta)#

multiplying numerator and denominator by #sqrt(1+costheta)#, we get

#f(theta)=-(sqrt(1+costheta)+2sqrt2)/sqrt(1-costheta)xxsqrt(1+costheta)/sqrt(1+costheta)#

= #(1+costheta+2sqrt(2(1+costheta)))/sintheta#