How do you simplify f(theta)=sec(theta/4)-sin(theta/4-pi/2)f(θ)=sec(θ4)sin(θ4π2) to trigonometric functions of a unit thetaθ?

1 Answer
Feb 18, 2016

f(theta)= 1/sqrt ( 1/2 +sqrt((1+cos theta)/8f(θ)=112+1+cosθ8 + sqrt ( 1/2 +sqrt((1+cos theta)/812+1+cosθ8

Explanation:

=sec theta/4 + sin(pi/2-theta/4)= 1/cos (theta/4 )+ cos (theta/4)secθ4+sin(π2θ4)=1cos(θ4)+cos(θ4)

cos (theta/4)= sqrt(cos^2(theta/4))=sqrt(1/2 (1+cos(theta/2)cos(θ4)=cos2(θ4)=12(1+cos(θ2)

=sqrt(1/2 (1+sqrt (cos^2( theta/2) 12(1+cos2(θ2)

=sqrt (1/2 (1+sqrt( 1/2 (1+cos theta))  12(1+12(1+cosθ)

= sqrt ( 1/2 +sqrt((1+cos theta)/812+1+cosθ8

Hence f(theta)= 1/sqrt ( 1/2 +sqrt((1+cos theta)/8f(θ)=112+1+cosθ8 + sqrt ( 1/2 +sqrt((1+cos theta)/812+1+cosθ8