To simplify (p^3-1)/(5-10p+5p^2)p3−15−10p+5p2, we should first factorize numerator and denomiantor.
p^3-1=p^3-p^2+p^2-p+p-1p3−1=p3−p2+p2−p+p−1
= p^2(p-1)+p(p-1)+1(p-1)p2(p−1)+p(p−1)+1(p−1)
= (p^2+p+1)(p-1)(p2+p+1)(p−1)
and 5-10+5p^2=5(p^2-2p+1)5−10+5p2=5(p2−2p+1)
= 5(p^2-p-p+1)=5(p(p-1)-1(p-1))=5(p-1)(p-1)5(p2−p−p+1)=5(p(p−1)−1(p−1))=5(p−1)(p−1)
Hence (p^3-1)/(5-10p+5p^2)p3−15−10p+5p2
= ((p^2+p+1)(p-1))/(5(p-1)(p-1))(p2+p+1)(p−1)5(p−1)(p−1)
= ((p^2+p+1)cancel((p-1)))/(5(p-1)cancel((p-1)))
= (p^2+p+1)/(5(p-1)) or (p^2+p+1)/(5p-5)