How do you simplify #root(3)(-1080)#?

1 Answer
Mar 7, 2018

See a solution process below:

Explanation:

We can rewrite this expression as:

#root(3)(-8 xx 27 xx 5)#

We can then use this rule for radicals to simplify the expression:

#root(n)(color(red)(a) * color(blue)(b)) = root(n)(color(red)(a)) * root(n)(color(blue)(b))#

#root(3)(color(red)(-8) * color(blue)(27) * 5) =>#

#root(3)(color(red)(-8)) * root(3)(color(blue)(27)) * root(3)(5) =>#

#-2 * 3 * root(3)(5) =>#

#-6root(3)(5)#