How do you simplify #root(3)96#?

1 Answer
May 4, 2016

#root(3)(96)=2root(3)(12)#

Explanation:

Using the fact that for #a, b >= 0# we have #root(n)(ab) = root(n)(a)*root(n)(b)#:

#root(3)(96) = root(3)(8*12)#

#=root(3)(8)*root(3)(12)#

#=root(3)(2^3)*root(3)(12)#

#=2root(3)(12)#