How do you simplify #(sec^2x-1)/ sec^2x#?

3 Answers
Nov 2, 2015

Simplify #(sec^2 - 1)/sec^2#

Ans: sin^2 x

Explanation:

Replace #sec^2 = 1/(cos^2 x# into the expression , we get:
#(1/(cos^2 x - 1))/(1/(cos^2 x)) = ((1 - cos^2 x)/cos^2 x)((cos^2 x)/1) = #

Since# (1 - cos^2 x) = sin^2x#, therefore:

#(sec^2 x - 1)/sec^2 x = sin^2 x#

Nov 2, 2015

#sin^2x#

Explanation:

#1 + tan^2x=sec^2x#

so #" "sec^2x-1 = tan^2x#

Giving #" " (tan^2x)/(sec^2x)#

But #" "sec^2x = 1/(cos^2x)#

Giving #" " (tan^2x)(cos^2x)#

But #tan^2x =(sin^2x)/(cos^2x)#

Giving #" " (sin^2x) (cos^2x)/(cos^2x) = sin^2x#

#color(red)("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")#
Clarification: By Tony B

Given:#" " (sec^2x-1)/sec^2x#

But #Sec^2x = 1 +tan^2x#

Giving:#" "(1+tan^2x-1)/(sec^2x)" "=" " tan^2x/sec^2x#

But #" "tanx=sinx/cosx" and "secx= 1/cosx #

#" "sin^2x/(cancel(cos^2x)) xxcancel(cos^2x)" "=" "sin^2x#

Mar 5, 2016

#=sin^2x#

Explanation:

#(sec^2x-1)/sec^2x#
#=cancel(sec^2x)/cancel(sec^2x)-1/sec^2x#
#=1-cos^2x#
#=sin^2x#