How do you simplify #(sin^2(t)+cos^2(t) )/ cos^2(t)#?

1 Answer
Jun 23, 2016

#sec^2t#

Explanation:

Divide each term on the numerator by #cos^2t#

#rArr(sin^2t)/cos^2t+(cos^2t)/cos^2t=tan^2t+1........ (A)#

From the identity #color(red)(|bar(ul(color(white)(a/a)color(black)(sin^2t+cos^2t=1)color(white)(a/a)|)))#
divide each term by #cos^2t#

#(sin^2t)/cos^2t+(cos^2t)/cos^2t=1/cos^2t# we obtain the identity.

#color(red)(|bar(ul(color(white)(a/a)color(black)(tan^2t+1=sec^2t)color(white)(a/a)|)))#
Substitute this result into the right side of (A)

#rArr(sin^2t+cos^2t)/cos^2t=sec^2t#