rarrsqrt(x-1)+sqrt(2x)=3→√x−1+√2x=3
rarrsqrt(x-1)=3-sqrt(2x)→√x−1=3−√2x
rarr[sqrt(x-1)]^2=[3-sqrt(2x)]^2→[√x−1]2=[3−√2x]2
rarrx-1=9-6sqrt(2x)+2x→x−1=9−6√2x+2x
rarr6sqrt(2x)=x+10→6√2x=x+10
rarr[6sqrt(2x)]^2=[x+10]^2→[6√2x]2=[x+10]2
rarr36*(2x)=x^2+20x+100→36⋅(2x)=x2+20x+100
rarrx^2-52x+100=0→x2−52x+100=0
rarrx^2-2*x*26+26^2-26^2+100=0→x2−2⋅x⋅26+262−262+100=0
rarr(x-26)^2=26^2-100=576→(x−26)2=262−100=576
rarrx-26=sqrt(576)=+-24→x−26=√576=±24
rarrx=26+24,26-24=50 or 2→x=26+24,26−24=50or2
Putting x=50x=50 in given equation, we get,
rarrsqrt(50-1)+sqrt(2*50)=17(rejected)→√50−1+√2⋅50=17(rejected)
Putting x=2x=2 in given equation, we get,
rarrsqrt(2-1)+sqrt(2*2)=3(accepted)
So, the required value of x is 2.