How do you simplify #(tanx + 1)^2 cosx#?

1 Answer
Sep 6, 2016

#secx(1+sin2x)#

Explanation:

Let's begin by expanding the bracket.

#(tanx+1)^2=tan^2x+2tanx+1#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(tanx=(sinx)/(cosx))color(white)(a/a)|)))#

#rArrtan^2x+2tanx+1=(sin^2x)/(cos^2x)+(2sinx)/cosx+1#

substitute this back into the original.

That is #(sin^2x/cos^2x+(2sinx)/cosx+1)cosx#

distribute the bracket.

#rArrsin^2x/cosx+2sinx+cosx#

express each term with a common denominator of cosx

#=sin^2x/cosx+(2sinxcosx)/cosx+cos^2x/cosx#

#=(sin^2x+2sinxcosx+cos^2x)/(cosx)........ (A)#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(sin^2x+cos^2x=1)|)))#

and #color(red)(bar(ul(|color(white)(a/a)color(black)(sin2x=2sinxcosx)color(white)(a/a)|)))#

Returning to (A)

#rArr(1+sin2x)/cosx=1/cosx+(sin2x)/cosx#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(secx=1/(cosx))color(white)(a/a)|)))#

#rArr1/cosx+(sin2x)/cosx=secx+secxsin2x#

#rArr(tanx+1)^2cosx=secx(1+sin2x)#