How do you simplify the expression #1-sec^2x#?

1 Answer
Aug 25, 2016

#-tan^2x#

Explanation:

Begin from the #color(blue)"basic trigonometric identity"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(sin^2x+cos^2x=1)color(white)(a/a)|)))#

divide all terms on both sides by #cos^2x#

#rArr(sin^2x)/(cos^2x)+(cos^2x)/(cos^2x)=1/(cos^2x)#

#color(orange)"Reminder"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(tanx=(sinx)/(cosx)" and " secx=1/(cosx))color(white)(a/a)|)))#

Hence identity simplifies to.

#tan^2x+1=sec^2xrArrtan^2x=sec^2x-1#

multiply through by -1

#rArr-tan^2x=1-sec^2x#