How do you simplify the expression #1-sec^2x#?
1 Answer
Aug 25, 2016
Explanation:
Begin from the
#color(blue)"basic trigonometric identity"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(sin^2x+cos^2x=1)color(white)(a/a)|)))# divide all terms on both sides by
#cos^2x#
#rArr(sin^2x)/(cos^2x)+(cos^2x)/(cos^2x)=1/(cos^2x)#
#color(orange)"Reminder"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(tanx=(sinx)/(cosx)" and " secx=1/(cosx))color(white)(a/a)|)))# Hence identity simplifies to.
#tan^2x+1=sec^2xrArrtan^2x=sec^2x-1# multiply through by -1
#rArr-tan^2x=1-sec^2x#