How do you simplify the expression #(cos^3t+sin^3t)/(cost+sint)^2#?

1 Answer
Aug 25, 2016

#(2 - sin 2t)/(2(cos t + sin t))#

Explanation:

Expression: #E = (cos^3 t + sin^3 t)/(cos t + sin t)^2#
Use these algebraic identities:
#a^3 + b^3 = (a + b)(a^2 - ab + b^2)#
#cos^2 t + sin^2 t = 1#
#sin 2t = 2sin t.cos t#.
We get:
#cos^3 t + sin^3 t = (cos t + sin t)( cos^2 t + sin^2 t - sin t.cos t) =#
#= (cos t + sin t)( 1 - (sin 2t)/2) = (cos t + sin t)(1/2)(2 + sin 2t)#
Simplify by (cos t + sin t), we get
#E = (2 - sin 2t)/(2(cos t + sin t))#