How do you simplify the expression #sec^2x-1#?

1 Answer
Sep 16, 2016

#tan^2x#

Explanation:

Using the #color(blue)"trigonometric identity"#

#color(red)(bar(ul(|color(white)(a/a)color(black)(sin^2x+cos^2x=1)color(white)(a/a)|)))#

divide all terms on both sides by #cos^2x#

#rArr(sin^2x)/(cos^2x)+(cos^2x)/(cos^2x)=1/(cos^2x)#

#color(orange)"Reminder"#

#color(red)(bar(ul(|color(white)(a/a)color(black)(tanx=(sinx)/(cosx)" and " secx=1/(cosx))color(white)(a/a)|)))#

#rArrtan^2x+1=sec^2x#

subtract 1 from both sides.

#tan^2xcancel(+1)cancel(-1)=sec^2x-1#

#rArrsec^2x-1=tan^2x#