How do you solve (1/4)^(2x)= (1/2)^x(14)2x=(12)x?

2 Answers

x=0x=0

Explanation:

Given that

(1/4)^{2x}=(1/2)^x(14)2x=(12)x

(1/2^2)^{2x}=(1/2)^x(122)2x=(12)x

(1/2)^{2\cdot 2x}=(1/2)^x(12)22x=(12)x

(1/2)^{4x}=(1/2)^x(12)4x=(12)x

Comparing the powers of base 1/212 on both the sides we get

4x=2x4x=2x

2x=02x=0

x=0x=0

Jul 25, 2018

x=0x=0

Explanation:

(1/4)^(2x)=((1/2)^2)^(2x)=(1/2)^(4x)(14)2x=((12)2)2x=(12)4x

"For "(1/2)^(4x)=(1/2)^xrArrx=0For (12)4x=(12)xx=0